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Abstract

This document provides a comprehensive tutorial on attention mechanisms, start-
ing from the fundamental self-attention mechanism and progressing to the efficient
Performer attention. We explain all mathematical concepts with clarity, using gene
sequence analysis as a motivating example throughout. The document includes step-
by-step explanations, comparative analyses, practical examples, and complete PyTorch
implementation code for Performer attention. All concepts are presented in an ac-
cessible manner suitable for both beginners and experienced practitioners in machine
learning and computational biology. E|
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Attention mechanisms have revolutionized deep learning, particularly in natural language
processing and computational biology. However, the quadratic complexity of standard self-
attention limits its applicability to long sequences, such as gene sequences, protein sequences,



UNDERSTANDING ATTENTION MECHANISMS: SELF vs. PERFORMER
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Figure 1: Comparison between standard self-attention (left) and Performer attention (right).
In self-attention, the input sequence X € RY*? s first projected into Queries (Q), Keys (K),
and Values (V). The attention matrix is then computed using the softmax of the similarity
scores QK T, producing a dense N x N matrix that assigns a weight to every pair of tokens,
resulting in quadratic time and memory complexity O(N?). The final output is obtained
as Z = softmax(QK")V. In contrast, Performer attention replaces the softmax kernel
with a randomized feature map ¢(-) that approximates the exponential kernel. Queries and
keys are transformed into low-dimensional random features Q' = ¢(Q) and K’ = ¢(K),
allowing the attention computation to be reordered as Z = Q'(K'"V) @ (Q'(K'"1)), which
avoids explicitly forming the N x N attention matrix. This reduces both time and memory
complexity from O(N?) to O(N), enabling efficient modeling of very long sequences such as
genomic data or long documents.



or single-cell RNA-seq data. The Performer (Performer Attention) addresses this limitation
by providing a linear-time approximation to self-attention through kernel methods and ran-
dom features.

In this tutorial, we:

1. Explain normal self-attention with intuitive examples

2. Introduce the mathematical foundation of attention mechanisms
Detail the Performer attention mechanism step-by-step
Compare computational complexities

Provide practical examples with gene sequences

S A T

Include complete PyTorch implementation

2 Normal Self-Attention

2.1 Intuition and Biological Motivation

Consider a set of N genes, where each gene is represented by its expression levels across
different conditions or time points. In biological systems, genes interact with each other in
complex networks. Self-attention allows each gene to "attend” to all other genes, determining
which relationships are most important for understanding its function within a pathway or
network.

2.2 Mathematical Formulation
Let X € RYV*? represent our input matrix, where:
e N: Number of genes (sequence length)

e d: Number of features per gene (embedding dimension)

2.2.1 Step 1: Linear Projections
We define three learnable weight matrices:

W e R™% (Query weights)
WE e R>%  (Key weights)
WY € R>%  (Value weights)

These project the input into query, key, and value representations:

Q= XWQ ¢ RV*d (1)
K = XWk ¢ RV*d (2)
V= XW"eRV® (3)



assuming dimension d = d, = d
Biological Interpretation:

e Q (Query): "What information does this gene need?”
e K (Key): "What information does this gene provide?”

e V (Value): "What is this gene’s actual expression profile?”

2.2.2 Step 2: Attention Scores

The attention scores measure similarity between queries and keys:

g =

e RVXN (4)

Vdy,

The scaling factor y/dj prevents extreme values that could cause vanishing gradients in
softmax.

2.2.3 Step 3: Softmax Normalization

Apply softmax row-wise to obtain attention weights:

1%wwmmwkzzfﬂ&g)eRmN (5)
k=1 EXP ik

Each row sums to 1, representing a probability distribution over genes to attend to.

2.2.4 Step 4: Weighted Combination

The output is a weighted sum of values:

7 = AV ¢ RVxd (6)

2.3 Example: 5 Genes

Consider 5 genes with 4-dimensional feature vectors representing expression levels:

Gene Feature 1 Feature 2 Feature 3 Feature 4

G1 1.0 0.5 0.2 1.5
G2 0.8 1.2 0.9 0.3
G3 0.3 0.7 1.8 0.4
G4 1.2 0.4 0.6 1.1
G5 0.9 1.0 0.5 0.8

Table 1: Example gene expression features
Let dy = d, = 4 for simplicity. After linear projections:
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Step 1: Compute @, K,V (using small random weights)

08 —03 1.2 05 09 —02 1.1 06
06 1.1 0.8 —0.2 0.7 1.0 09 —0.1
Q=1|-01 05 15 03|, K=|-02 06 16 04
1.1 03 07 09 1.0 04 08 1.0
07 09 04 06 08 08 05 0.7

Step 2: Compute attention scores for Gene 1:

¢ = [0.8,-0.3,1.2,0.5]
ky = [0.9,-0.2,1.1,0.6] = q1 - ky = 2.12
ks = [0.7,1.0,0.9, —0.1] = ¢y - k» = 0.89

Sy =1[2.12,0.89,1.45,2.01,1.67]/2 (divided by V4 = 2)
Step 3: Apply softmax:

A, = softmax([1.06,0.445, 0.725, 1.005, 0.835])
— [0.286,0.115,0.162, 0.239, 0.198]

Step 4: Compute output for Gene 1:
z1 =0.286-v; +0.115 - v9 +0.162 - v3 + 0.239 - v4 + 0.198 - v5

2.4 Computational Complexity
The bottleneck is computing QK7:

e Memory: O(N?) to store the attention matrix

e Computation: O(N?d},) for matrix multiplication
For N = 10,000 genes and dj = 64:

Memory = 10,000? x 4 bytes ~ 400 MB
Operations = 10,000% x 64 ~ 6.4 x 10°

This quadratic scaling makes standard attention impractical for large gene sequences.

3 Performer Attention

3.1 Motivation and Core Idea

The Performer attention mechanism addresses the quadratic complexity problem by:

1. Reformulating attention as a kernel method
2. Using random feature maps for kernel approximation

3. Reordering computations to avoid explicit N x N matrices

6



3.2 Mathematical Foundation
3.2.1 Kernel Reformulation

Recall that softmax attention can be written as:

Attention(Q, K,V) = D™* (QKT> % (7)
ention(Q, K, V) = exp
Vi
where D = diag (exp (Q—\/lg) 1N).
The key insight is to treat exp(q! k;/+/dy) as a kernel function:

Ksoftmax(xa y) - exp(xTy) (8)

Understanding Softmax as a Kernel in Attention

Why Softmax Acts as a Kernel in Attention Mechanisms

To understand why we treat softmax as a kernel, we need to examine the Attention
mechanism at the element-wise level. A kernel can be viewed as a function K(x,y)
that takes two vectors and returns a scalar representing their similarity.

1. The Entry-Wise View
QK™

In standard attention, we compute the matrix A = exp ( T ) Focusing on a single

entry at position (i, 7):

Ty
k

This value A;; represents the raw affinity between the i-th query (e.g., Gene A) and
the j-th key (e.g., Gene B). In kernel theory, any function computing such similarity
can be interpreted as a Kernel Function K(x,y).

2. The Normalization Role of D
Softmax isn’t merely an exponential—it includes normalization so each row sums to
1. In standard notation:

exp(z;)

N
> j=1 SXP (25)
In matrix formulation, this is captured through the diagonal matrix D. Each diagonal
entry D;; contains the sum of affinities for row :

N T

Z q; k;
Dii = exp < )

=1 Vi

The final attention weights are obtained by:

Softmax(z); =

Attellti()ll(Q K \/) =D ! exp ( ) V
9 4B -
vV dk




Multiplication by D~! divides each element in row i by D;;, exactly implementing
the softmax operation. Thus, the softmax attention mechanism can be interpreted
as applying a kernel (the exponential of scaled dot-products) followed by row-wise
normalization.

3.2.2 Random Feature Maps

The kernel trick approximates the kernel function using random features:

K(z,y) = E[¢(z)" o(y)] = o(2)" d(y) (9)

For the softmax kernel, we can use trigonometric random features or positive random
features.

3.2.3 Positive Random Features (PRF)

The Performer uses:

o(x) = Viﬁ exp (Wx - @) (10)

where W € R™*4 is a random matrix with orthogonal rows.

Why Random Feature Maps and Positive Random Features (PRF)

Motivation: The Computational Bottleneck of Exact Kernel Methods

The standard attention mechanism with softmax has a quadratic computational com-
plexity O(N?) in sequence length, as it requires computing all pairwise interactions
between queries and keys. This becomes prohibitive for long sequences. Random
feature maps provide a solution by approximating the kernel function with linear com-
plexity.

3.2.4 Random Feature Maps: The Approximation Principle

The core idea comes from the kernel trick, which states that many kernel functions
can be approximated by explicit feature maps:

K(%,y) = Eup)[0u(x) 0u(y)] = ¢(x) ¢(y) (11)

where ¢(x) is a random feature map that projects the input into a higher-
dimensional space (dimension m), and the expectation is over some distribution p(w)
of random parameters.
Why this works: Many kernels (including the softmax/Gaussian kernel) can be
expressed as an inner product in some implicit feature space. Random feature maps
make this explicit, allowing us to:

e Transform queries and keys separately: ¢(q;) and ¢(k;)




(Qe(K)"V

normalizer

e Achieve O(Nmd) complexity instead of O(N2d)

e Compute attention as: Attention ~

3.2.5 Positive Random Features (PRF) for the Softmax Kernel

For the softmax kernel K (x,y) = exp(x’y), we need a specific type of random features.
The Performer model (Choromanski et al., 2020) uses:

o) = = exp (W — L) (12

where W € R™*4 is a random matrix with rows w; ~ N(0,1;), often made orthogo-

nal for better approximation.
Why this particular form? This stems from the Gaussian integral identity:

) ry X vy IyI?
exp(x'y) = Ewnor [exp | W' x 5 ) FP\WY 9 (13)

Key properties of PRF:
e Positivity: All features are positive (exp(-) > 0), which is crucial for stable
attention computation

e Unbiased estimator: E[¢(x)?¢(y)] = exp(x'y)

e Variance reduction: Orthogonal rows in W reduce the variance of the esti-
mator

e Linearization: Allows rewriting attention as:
Attention(Q, K, V) ~ D™ ((Q)(¢(K)"V))
where D is computed from ¢(Q)¢(K)™'1

Mathematical Derivation: Given ¢(x) = % exp(Wx — [|x||?/2), we have:

S = %i ( N uxuz—guyw>

By the law of large numbers, as m — oo, this converges to exp(x’y).

Practical Impact: The PRF approach enables linear attention mechanisms that:

Scale to very long sequences (thousands to millions of tokens)

Maintain theoretical guarantees of approximation quality

Can be trained end-to-end like standard transformers

Have been successfully applied in models like Performer, Linear Transformer,
and others




3.3 Step-by-Step Algorithm

Algorithm 1 Performer Attention Algorithm

RY*4 random feature dimension m

Require: Input X €
Ensure: Output Z € RNXd

: // Step 1: Linear projections (same as self-attention)
Q, K,V <« LinearProjections(X)

// Step 2: Compute random features

Generate random orthogonal matrix W € R™*4
Q'+ 6(Q) = L exp(WQ — 195

K"+ ¢(K) = J=exp(WK — I£L)

// Step 3: Reorder computations

// Instead of: Z = softmax(QKT)V

// We compute: Z = (Q(K'"V)) 0 (Q'(K"'1y))
numerator < Q' x (K7 x V)

: denominator + @’ x (K" x 1y)

: Z <+ numerator @ denominator

13: return 7

Why Random Feature Maps and Positive Random Features (PRF)

3.4 Detailed Example with 5 Genes
Let’s use the same 5 genes from Table [T} with:

o e

e d =4 (original features)
e m = 8 (random features, much smaller than N? = 25)

[ dk:dvz4

3.4.1 Step 1: Compute Random Matrix W

Generate random orthogonal matrix W € R3*4:

(03 —02 08 05
04 07 01 —06
0.6 03 —04 0.6
0.1 —05 07 05
07 01 05 —05
0.5 0.6 02 0.6
02 08 —03 05
04 02 06 —07

3.4.2 Step 2: Compute Random Features for Gene 1

After linear projection, suppose ¢; = [0.8,—0.3,1.2,0.5].

10



Compute Wqq:

0.3 x 0.8+ (—0.2) x (—0.3) + 0.8 x 1.2+ 0.5 x 0.5

—0.4x0.840.7 x (—0.3) +0.1x1.2+ (—0.6) x 0.5
WQ1 = .

0.4 x 0.84 0.2 x (—0.3) + 0.6 x 1.2+ (—0.7) x 0.5
= [1.05, —0.62,0.78,0.45, —1.12,1.21, —0.35, 0.92]

Compute ||¢1|]*/2 = (0.8% + (—0.3)? + 1.22 4+ 0.5%) /2 = 0.955
Apply transformation:

1
é(q1) = —= exp ([1.05, —0.62, 0.78,0.45, —1.12,1.21, —0.35, 0.92] — 0.955)

V8
= 5393 % [xP(0.095), exp(=1.575), ..., exp(—0.035)]
— [0.18,0.05,0.12,0.09, 0.03,0.21, 0.07, 0.14]

3.5 Complexity Analysis

Operation  Self-Attention Performer Savings

Memory O(N?) O(Nm)  O(N/m)
Computation O(N?dy,) O(Nmdy) O(N/m)
Matrix Size N x N N xm -

Table 2: Complexity comparison (m < N)

For N = 10,000, d = 64, m = 256:

N 10,000
M ings = — = — ~
emory savings - 556 39x
N2d N
Computation savings = = 2~ 39x%
Nmd, m

4 Comparative Analysis

4.1 Theoretical Differences

4.2 Practical Considerations for Gene Analysis
4.2.1 When to Use Self-Attention:
e Small gene sets (N < 1,000)

e When exact attention patterns are crucial

11



1

2

3 import

Aspect Self-Attention Performer
Exactness Exact computation Approximate via random
features
Memory Quadratic in  sequence Linear in sequence length
length
Compute Time Quadratic in  sequence Linear in sequence length
length

Parallelization
Theoretical Guarantees
Biological
tion

Interpreta-

Limited by N? matrix
Exact result
Exact gene-gene
tions

interac-

Highly parallelizable
Probabilistic bounds
Approximate interactions

e For interpretability studies requiring exact weights

e When computational resources are abundant

4.2.2 When to Use Performer:

e Genome-scale analysis (N > 10,000)

e Single-cell RNA-seq with many cells

e Protein sequence analysis

e Real-time biological applications

5 PyTorch Implementation

5.1 Complete Performer Attention Module

torch
torch.nn as nn

import
import

import math

torch.nn.functional as F

class PerformerAttention (nn.Module):

Performer Attention Module

Args:
dim (int):
heads (int):
dim_head (int):
causal (bool):

Input dimension

Number of attention heads
Dimension per head

Whether to use causal masking

12
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def

kernel_type (str): ’relu’ or ’softmax’ kermnel
random_features (int): Number of random features (m)

__init__(self, dim, heads=8, dim_head=64, causal=False,
kernel_type=’relu’, random_features=256):

super () . __init__ ()

self.dim = dim

self .heads = heads

self.dim_head = dim_head

self.causal = causal
self .kernel_type = kermnel_type
self . random_features = random_features

# Inner dimension for multi-head attention
inner_dim = dim_head * heads

# Linear projections for Q, K, V
self .to_qkv = nn.Linear (dim, inner_dim * 3, bias=False)

# Output projection
self .to_out = nn.Linear (inner_dim, dim)

# Random projection matrix (not learned, fixed during training)
self .register_buffer (’projection_matrix’,
self.create_projection_matrix(dim_head,

random_features))

def

def

# Layer normalization for stability
self .norm = nn.LayerNorm(dim_head)

create_projection_matrix(self, dim, random_features):
nnn

Create random orthogonal matrix for kernel approximation

Args:
dim: Input dimension
random_features: Number of random features (m)

Returns:
Random orthogonal matrix of shape [dim, random_features]

# Generate random matrix
rand_mat = torch.randn(random_features, dim)

# Orthogonalize using QR decomposition
q, = torch.linalg.qr(rand_mat, mode=’reduced’)

# Transpose to get [dim, random_features]
return q.t()

relu_kernel (self, x, is_query=False):
nnn

RelU kernel approximation

13
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def

def

¢(z) =max(0,z) for both queries and keys

return F.relu(x)

softmax_kernel (self, x, is_query, projection_matrix):

Softmax kernel approximation using random features

For queries: ¢@)=:§§ﬂ%MPUVq_‘MH%

For keys: ¢(k) = \}m x exp(Wk — ||k[|?)

# Normalize inputs for numerical stability
x = F.normalize(x, dim=-1, p=2)

# Project using random matrix

projected = torch.matmul(x, projection_matrix)

# Compute squared norm

x_norm_squared = (x ** 2).sum(dim=-1, keepdim=True)

projected = projected - x_norm_squared / 2

return torch.exp(projected) / math.sqrt(self.random_features)

forward (self, x, mask=None):

Forward pass

Args:

x: Input tensor of shape [batch_size, seq_len, dim]

mask: Optional attention mask

Returns:

Output tensor of shape [batch_size, seq_len, dim]

batch_size, seq_len, _ = x.shape

# Step 1: Linear projections to get Q, K, V
gkv = self.to_qkv(x).chunk(3, dim=-1)
g, k, v = map(

lambda t: t.reshape(batch_size, seq_len,
dim_head) .transpose (1, 2),

qkv
)

# Normalize for stability
q = self.norm(q)
k self .norm (k)

# Step 2: Apply kernel approximation
if self.kernel_type == ’relu’:

self .heads,

g_prime = self.relu_kernel(q, is_query=True)

14

self.



128
129
130

131

145
146

147

160
161
162
163
164
165
166

167

k_prime = self.relu_kernel(k, is_query=False)
else: # softmax kernel
g_prime = self.softmax_kernel(q, is_query=True,

projection_matrix=self.

projection_matrix)

k_prime = self.softmax_kernel (k, is_query=False,

projection_matrix=self.

projection_matrix)

# Step 3: Compute attention using kernel trick

# Transpose K’ for efficient multiplication

k_prime_t = k_prime.transpose(-2, -1) # [batch, heads,

seq_len]

>

1]

# Compute K’°T V

dim_head,

ktv = torch.matmul (k_prime_t, v) # [batch, heads, dim_head,
dim_head]

# Compute Q’(K’"T V)

numerator = torch.matmul (q_prime, ktv) # [batch, heads, seq_len,
dim_head]

# Normalization: compute denominator
# Create ones tensor for denominator calculation

ones = torch.ones(batch_size, seq_len, 1, 1, device=x.device)

# Compute K’°T * 1

kt_ones = torch.matmul (k_prime_t, ones) # [batch, heads, dim_head

# Compute Q’(K’"T 1)

denominator = torch.matmul (q_prime, kt_ones) # [batch,

seq_len, 1]

# Avoid division by zero
denominator = denominator + 1e-8

# Normalize to get attention output
out = numerator / denominator

# Reshape back to original dimensions
out = out.transpose(l, 2).reshape(batch_size, seq_len,

# Final linear projection
return self.to_out (out)

class GenePerformer (nn.Module) :

Complete gene sequence model using Performer attention

Args:

num_genes: Number of unique genes in vocabulary

15
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190
191
192
193
194
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199
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201
202
203
204
205
206
207
208

209

def

def

dim: Embedding dimension

depth: Number of Performer layers

heads: Number of attention heads

dim_head: Dimension per head

random_features: Number of random features for approximation

__init__(self, num_genes, dim=128, depth=6, heads=8,
dim_head=64, random_features=256):
super () . __init__(Q)

# Gene embeddings (learnable representations)
self .gene_embeddings = nn.Embedding (num_genes, dim)

# Positional encodings (for sequence order)
self .position_embeddings = nn.Parameter (torch.randn (1, 1000, dim))

# Multiple Performer layers
self.layers = nn.ModulelList ([
PerformerAttention (
dim=dim,
heads=heads,
dim_head=dim_head,
kernel _type=’softmax’,
random_features=random_features
)
for _ in range (depth)
iD)

# Layer normalization
self .norm = nn.LayerNorm(dim)

# Output layer for gene prediction tasks
self .output_layer = nn.Linear (dim, num_genes)

forward (self, gene_indices, mask=None) :

Forward pass for gene sequence analysis

Args:
gene_indices: Tensor of shape [batch_size, seq_len]
containing gene indices
mask: Optional attention mask

Returns:
Logits for gene predictions

nmnn

batch_size, seq_len = gene_indices.shape

# Get gene embeddings
x = self.gene_embeddings (gene_indices) # [batch, seq_len, dim]

# Add positional embeddings
pos_emb = self.position_embeddings([:, :seq_len, :]

16



222 X = X + pos_emb

224 # Apply Performer layers with residual connections
225 for layer in self.layers:

226 # Residual connection

227 x = layer (x, mask=mask) + x

228

229 # Final normalization

230 x = self.norm(x)

231

232 # Output predictions

233 return self.output_layer (x)

236 def create_gene_attention_model (config):

238 Factory function to create gene attention model
239

240 Args:

241 config: Dictionary containing model configuration
242

243 Returns:

244 Initialized GenePerformer model

245 o

246 model = GenePerformer (

247 num_genes=config[’num_genes’],

248 dim=config.get(’dim’, 128),

249 depth=config.get (’depth’, 6),

250 heads=config.get (’heads’, 8),

251 dim_head=config.get(’dim_head’, 64),

252 random_features=config.get(’random_features’, 256)
253 )

254

255 # Initialize weights

256 for p in model.parameters():

257 if p.dim() > 1:

258 nn.init.xavier_uniform_ (p)

260 return model

261

262

263 # Example usage

264 1f __mname__ == "__main__":

265 # Configuration

266 config = {

267 ’num_genes’: 1000, # Vocabulary size
268 ’dim’: 128,

269 >depth’: 6,

270 ’heads’: 8,

271 ’dim_head’: 64,

272 ’random_features’: 256
273 }

274

275 # Create model

17



model = create_gene_attention_model (config)

# Create sample batch of gene sequences

batch_size = 32

seq_len = 50 # 50 genes per sequence
gene_sequences = torch.randint (0, config[’num_genes’], (batch_size,
seq_len))

# Forward pass

print (f"Input shape: {gene_sequences.shapel}")

output = model (gene_sequences)

print (£"Output shape:

{output.shape}")

# Memory usage comparison
total_params = sum(p.numel() for p in model.parameters())

print (f"Total parameters:

= seq_len

QB = #

config[’dim_head’]

normal_memory = N *x N

Example of memory savings

config[’random_features’]

* 4

{total_params:,}")

# bytes for float32
performer_memory = N * m *x d * 4

print (f"\nMemory comparison for seq_len={N}:")

print (f"Normal attention:
print (f"Performer attention:

{normal_memory:,} bytes")
{performer_memory:,} bytes")

print (f"Savings: {normal_memory/performer_memory:.1f}x")

Listing 1: Complete Performer Attention Implementation

5.2 Training Example for Gene Function Prediction

import torch
import torch.nn as nn

import torch.optim as optim
from torch.utils.data import Dataset, Dataloader

import numpy as np

class GeneDataset (Dataset):

"""Dataset for gene sequence analysis

def __init__(self, sequences,
self .sequences = sequences

self.labels = labels
self .max_len = max_len

def __len__(self):

return len(self.sequences)

def __getitem__(self,

idx) :

labels, max_len=100):

# List of gene index sequences
# Corresponding function labels

18
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61

62

63

64

seq
label

self.labels[idx]

# Pad sequence if necessary
if len(seq) < self.max_len:
seq seq + [0]

return torch.tensor (seq),

def train_gene_model (model,

train_loader,

self .sequences [idx] [:self .max_len]

* (self.max_len - len(seq))

torch.tensor (label)

val_loader, config):

Training function for gene attention model

Args:
model :
train_loader:
val_loader:
config:

GenePerformer model

# Loss function and optimizer

criterion nn.CrossEntropyLoss

optimizer optim.AdamW (
model . parameters (),
lr=config.get (’1r’,

le-4),

weight_decay=config.get(’weight_decay’,

# Learning rate scheduler

scheduler
optimizer,
T_max=config.get (’epochs’,

# Training loop

O

50)

for epoch in range(config[’epochs’]):

model . train ()
total_loss

0

for batch_idx, (sequences,
optimizer.zero_grad ()

# Forward pass
outputs
loss

labels)

model (sequences)
criterion(outputs.view(-1,

DatalLoader for training data
DatalLoader for validation data
Training configuration

0.01)

optim.lr_scheduler.CosineAnnealingLR(

in enumerate(train_loader):

outputs.size(-1)),

labels.view(-1))

# Backward pass
loss.backward ()

# Gradient clipping

torch.nn.utils.clip_grad_norm_(model.parameters(), 1
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96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

optimizer.step ()

total_loss += loss.item()

if batch_idx % 100 == O:
print (£"Epoch {epoch},
O:.4fF")

# Validation
model .eval ()
val_loss = 0
correct = 0
total = 0

with torch.no_grad():
for sequences,
outputs =

loss =

model (sequences)

labels.view(-1))
val_loss += loss.item()
# Calculate accuracy
_, predicted = outputs.max(-1)
total += labels.numel ()

correct += predicted.eq(labels).

avg_train_loss =
avg_val_loss =
accuracy = 100. *x correct / total
print (£"\nEpoch {epoch} Summary:")
print (f"Train Loss:
print (f"Val Loss: {avg_val_loss:.4f}")
print (£"Val Accuracy: {accuracy:.2f}%")

# Update learning rate
scheduler.step ()

print ("Training complete!")

4 # Example of creating and training the model
5 def main():

# Configuration

config = {

’num_genes’: 20000, # Human genome has
genes

’dim’: 256,

>depth’: 8,

’heads’: 8,

’dim_head’: 64,

’random_features’: 512,

’1r’: l1le-4,

>epochs’: 50,

20

Batch {batch_idx},

labels in val_loader:

criterion(outputs.view(-1,

Loss: {loss.item

outputs.size(-1)),

sum () .item ()

total_loss / len(train_loader)
val_loss / len(val_loader)

{avg_train_loss:.4f}")

“20,000 protein-coding
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146

160
161
162
163

164

’batch_size’: 32

# Create model
model = create_gene_attention_model (config)

# Create synthetic dataset (in practice, use real gene data)
num_samples = 10000
max_seq_len = 100

# Generate random gene sequences
sequences = [
np.random.randint (0, config[’num_genes’],

np.random.randint (50, max_seq_len)).tolist ()

for _ in range(num_samples)
]
# Generate random labels (e.g., pathway membership)
labels = np.random.randint (0, 10, num_samples) # 10 different
pathways

# Split into train/val
split_idx = int (0.8 * num_samples)

train_dataset = GeneDataset (sequences[:split_idx], labels[:split_idx])
val_dataset = GeneDataset (sequences[split_idx:], labels[split_idx:])

train_loader = Dataloader (train_dataset, batch_size=config[’batch_size

7]’
shuffle=True)

val_loader = DatalLoader(val_dataset, batch_size=config[’batch_size’])

# Train the model
train_gene_model (model, train_loader, val_loader, config)

# Save the model
torch.save(model.state_dict(), ’gene_performer_model.pth’)
print ("Model saved!")

if name == "__main__":

main ()

Listing 2: Training Loop for Gene Function Prediction

6 Biological Applications

6.1 Gene-Gene Interaction Networks

Performer attention enables the analysis of large gene interaction networks by:

1. Scalability: Handling thousands of genes simultaneously
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2. Attention Weights as Interactions: The attention matrix approximates gene-gene
interaction strengths

3. Pathway Analysis: Identifying genes that co-attend to each other in biological path-

ways

6.2 Single-Cell RNA-Seq Analysis
For single-cell RNA-seq data with IV cells and G genes:

e Normal attention: O(N?@) - impractical for N > 10,000 cells
e Performer attention: O(NmG) where m ~ 256 — 512

e Enables analysis of large-scale single-cell datasets

6.3 Protein Sequence Analysis

Protein sequences can be very long (up to 35,000 amino acids for Titin):
e Normal attention fails due to quadratic complexity
e Performer attention scales linearly with sequence length

e Enables whole-protein sequence analysis

7 Advanced Topics

7.1 Different Kernel Functions

Kernel Random Features Properties

Softmax o(x) = exp(Wa — [|z]|?/2) Matches standard attention
ReLU ¢(z) = max(0, Wz) Simpler, faster
Trigonometric o(z) = [sin(Wz), cos(Wz)] Theoretical guarantees

Table 4: Kernel functions for Performer attention

7.2 Hyperparameter Selection

e Random features (m): Typically 256-1024, trade-off between accuracy and efficiency

e Number of heads: 4-16, depends on task complexity

Dimension per head: Usually 32-128

Kernel type: ’softmax’ for exact approximation, 'relu’ for speed
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8 Conclusion

The Performer attention mechanism represents a significant advance in scalable attention
architectures. By reformulating attention as a kernel method and using random feature ap-
proximations, it achieves linear time and memory complexity while maintaining competitive
performance with standard attention.

For biological applications, particularly in genomics, this enables:

e Analysis of genome-scale datasets
e Large-scale single-cell RNA-seq analysis

The provided PyTorch implementation offers a practical starting point for researchers
and practitioners working with large biological sequences. The modular design allows easy
integration into existing pipelines and adaptation to specific biological tasks.

8.1 Future Directions

1. Adaptive random features: Learning the projection matrix instead of random ini-
tialization

2. Sparse attention patterns: Combining Performer with sparse attention for even
greater efficiency

3. Biological priors: Incorporating domain knowledge into attention mechanisms

4. Multimodal integration: Combining gene expression with other omics data
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A Appendix: Mathematical Derivations

A.1 Softmax Kernel Derivation

The softmax kernel is defined as:

Ksoftmax(ma y) = eXp({ETy) (14)

We can rewrite this using the identity:

z||? + |lyl|? = ||z — y||?
ooty = o (L1110 = =01

- s (L) g (B ey (=) w0

The Gaussian kernel exp(—||z — y||>/2) can be approximated using random Fourier fea-
tures.

(15)

A.2 Random Feature Maps for GGaussian Kernel

For the Gaussian kernel K (z,y) = exp(—|lz — y||*/(20?)), we have:
K (z,y) = Eppro,n[cos(w” (z — y))] (17)
This leads to the random feature map:

[cos(wl z),sin(w!z),..., cos(w?! x),sin(wl x)] (18)

¢(x) =

3~

24



	Introduction
	Normal Self-Attention
	Intuition and Biological Motivation
	Mathematical Formulation
	Step 1: Linear Projections
	Step 2: Attention Scores
	Step 3: Softmax Normalization
	Step 4: Weighted Combination

	Example: 5 Genes
	Computational Complexity

	Performer Attention
	Motivation and Core Idea
	Mathematical Foundation
	Kernel Reformulation
	Random Feature Maps
	Positive Random Features (PRF)
	Random Feature Maps: The Approximation Principle
	Positive Random Features (PRF) for the Softmax Kernel

	Step-by-Step Algorithm
	Detailed Example with 5 Genes
	Step 1: Compute Random Matrix W
	Step 2: Compute Random Features for Gene 1

	Complexity Analysis

	Comparative Analysis
	Theoretical Differences
	Practical Considerations for Gene Analysis
	When to Use Self-Attention:
	When to Use Performer:


	PyTorch Implementation
	Complete Performer Attention Module
	Training Example for Gene Function Prediction

	Biological Applications
	Gene-Gene Interaction Networks
	Single-Cell RNA-Seq Analysis
	Protein Sequence Analysis

	Advanced Topics
	Different Kernel Functions
	Hyperparameter Selection

	Conclusion
	Future Directions

	Appendix: Mathematical Derivations
	Softmax Kernel Derivation
	Random Feature Maps for Gaussian Kernel


