
Demystifying Performer Attention
Handle Genome-Length Sequences Efficiently

Shakeel A. Sheikh
The Kashmir Hub for Artificial Intelligence Research (KHAIR)

shakeelzmail608@gmail.com

January 10, 2026

Abstract

This document provides a comprehensive tutorial on attention mechanisms, start-
ing from the fundamental self-attention mechanism and progressing to the efficient
Performer attention. We explain all mathematical concepts with clarity, using gene
sequence analysis as a motivating example throughout. The document includes step-
by-step explanations, comparative analyses, practical examples, and complete PyTorch
implementation code for Performer attention. All concepts are presented in an ac-
cessible manner suitable for both beginners and experienced practitioners in machine
learning and computational biology. 1

Contents

1 Introduction 2

2 Normal Self-Attention 4
2.1 Intuition and Biological Motivation . 4
2.2 Mathematical Formulation . 4

2.2.1 Step 1: Linear Projections . 4
2.2.2 Step 2: Attention Scores . 5
2.2.3 Step 3: Softmax Normalization . 5
2.2.4 Step 4: Weighted Combination . 5

2.3 Example: 5 Genes . 5
2.4 Computational Complexity . 6

1If you find any mistakes in the document, please let me know via email: shakeelzmail608@gmail.com.

1

ar
X

iv
:s

ub
m

it/
71

50
98

3
 [

cs
.A

I]
 1

0
Ja

n
20

26

https://thekhair.github.io/

3 Performer Attention 6
3.1 Motivation and Core Idea . 6
3.2 Mathematical Foundation . 7

3.2.1 Kernel Reformulation . 7
3.2.2 Random Feature Maps . 8
3.2.3 Positive Random Features (PRF) . 8
3.2.4 Random Feature Maps: The Approximation Principle 8
3.2.5 Positive Random Features (PRF) for the Softmax Kernel 9

3.3 Step-by-Step Algorithm . 10
3.4 Detailed Example with 5 Genes . 10

3.4.1 Step 1: Compute Random Matrix W 10
3.4.2 Step 2: Compute Random Features for Gene 1 10

3.5 Complexity Analysis . 11

4 Comparative Analysis 11
4.1 Theoretical Differences . 11
4.2 Practical Considerations for Gene Analysis 11

4.2.1 When to Use Self-Attention: . 11
4.2.2 When to Use Performer: . 12

5 PyTorch Implementation 12
5.1 Complete Performer Attention Module . 12
5.2 Training Example for Gene Function Prediction 18

6 Biological Applications 21
6.1 Gene-Gene Interaction Networks . 21
6.2 Single-Cell RNA-Seq Analysis . 22
6.3 Protein Sequence Analysis . 22

7 Advanced Topics 22
7.1 Different Kernel Functions . 22
7.2 Hyperparameter Selection . 22

8 Conclusion 23
8.1 Future Directions . 23

A Appendix: Mathematical Derivations 24
A.1 Softmax Kernel Derivation . 24
A.2 Random Feature Maps for Gaussian Kernel 24

1 Introduction

Attention mechanisms have revolutionized deep learning, particularly in natural language
processing and computational biology. However, the quadratic complexity of standard self-
attention limits its applicability to long sequences, such as gene sequences, protein sequences,

2

Figure 1: Comparison between standard self-attention (left) and Performer attention (right).
In self-attention, the input sequence X ∈ RN×d is first projected into Queries (Q), Keys (K),
and Values (V). The attention matrix is then computed using the softmax of the similarity
scores QK⊤, producing a dense N ×N matrix that assigns a weight to every pair of tokens,
resulting in quadratic time and memory complexity O(N2). The final output is obtained
as Z = softmax(QK⊤)V . In contrast, Performer attention replaces the softmax kernel
with a randomized feature map ϕ(·) that approximates the exponential kernel. Queries and
keys are transformed into low-dimensional random features Q′ = ϕ(Q) and K ′ = ϕ(K),
allowing the attention computation to be reordered as Z = Q′(K ′⊤V)⊘ (Q′(K ′⊤1)), which
avoids explicitly forming the N ×N attention matrix. This reduces both time and memory
complexity from O(N2) to O(N), enabling efficient modeling of very long sequences such as
genomic data or long documents.

3

or single-cell RNA-seq data. The Performer (Performer Attention) addresses this limitation
by providing a linear-time approximation to self-attention through kernel methods and ran-
dom features.

In this tutorial, we:

1. Explain normal self-attention with intuitive examples

2. Introduce the mathematical foundation of attention mechanisms

3. Detail the Performer attention mechanism step-by-step

4. Compare computational complexities

5. Provide practical examples with gene sequences

6. Include complete PyTorch implementation

2 Normal Self-Attention

2.1 Intuition and Biological Motivation

Consider a set of N genes, where each gene is represented by its expression levels across
different conditions or time points. In biological systems, genes interact with each other in
complex networks. Self-attention allows each gene to ”attend” to all other genes, determining
which relationships are most important for understanding its function within a pathway or
network.

2.2 Mathematical Formulation

Let X ∈ RN×d represent our input matrix, where:

• N : Number of genes (sequence length)

• d: Number of features per gene (embedding dimension)

2.2.1 Step 1: Linear Projections

We define three learnable weight matrices:

WQ ∈ Rd×dk (Query weights)

WK ∈ Rd×dk (Key weights)

W V ∈ Rd×dv (Value weights)

These project the input into query, key, and value representations:

Q = XWQ ∈ RN×dk (1)

K = XWK ∈ RN×dk (2)

V = XW V ∈ RN×dv (3)

4

assuming dimension dk = dv = d
Biological Interpretation:

• Q (Query): ”What information does this gene need?”

• K (Key): ”What information does this gene provide?”

• V (Value): ”What is this gene’s actual expression profile?”

2.2.2 Step 2: Attention Scores

The attention scores measure similarity between queries and keys:

S =
QKT

√
dk
∈ RN×N (4)

The scaling factor
√
dk prevents extreme values that could cause vanishing gradients in

softmax.

2.2.3 Step 3: Softmax Normalization

Apply softmax row-wise to obtain attention weights:

A = softmax(S) =
exp(Sij)∑N
k=1 exp(Sik)

∈ RN×N (5)

Each row sums to 1, representing a probability distribution over genes to attend to.

2.2.4 Step 4: Weighted Combination

The output is a weighted sum of values:

Z = AV ∈ RN×dv (6)

2.3 Example: 5 Genes

Consider 5 genes with 4-dimensional feature vectors representing expression levels:

Gene Feature 1 Feature 2 Feature 3 Feature 4

G1 1.0 0.5 0.2 1.5
G2 0.8 1.2 0.9 0.3
G3 0.3 0.7 1.8 0.4
G4 1.2 0.4 0.6 1.1
G5 0.9 1.0 0.5 0.8

Table 1: Example gene expression features

Let dk = dv = 4 for simplicity. After linear projections:

5

Step 1: Compute Q,K, V (using small random weights)

Q =


0.8 −0.3 1.2 0.5
0.6 1.1 0.8 −0.2
−0.1 0.5 1.5 0.3
1.1 0.3 0.7 0.9
0.7 0.9 0.4 0.6

 , K =


0.9 −0.2 1.1 0.6
0.7 1.0 0.9 −0.1
−0.2 0.6 1.6 0.4
1.0 0.4 0.8 1.0
0.8 0.8 0.5 0.7


Step 2: Compute attention scores for Gene 1:

q1 = [0.8,−0.3, 1.2, 0.5]
k1 = [0.9,−0.2, 1.1, 0.6]⇒ q1 · k1 = 2.12

k2 = [0.7, 1.0, 0.9,−0.1]⇒ q1 · k2 = 0.89

...

S1 = [2.12, 0.89, 1.45, 2.01, 1.67]/2 (divided by
√
4 = 2)

Step 3: Apply softmax:

A1 = softmax([1.06, 0.445, 0.725, 1.005, 0.835])

= [0.286, 0.115, 0.162, 0.239, 0.198]

Step 4: Compute output for Gene 1:

z1 = 0.286 · v1 + 0.115 · v2 + 0.162 · v3 + 0.239 · v4 + 0.198 · v5

2.4 Computational Complexity

The bottleneck is computing QKT :

• Memory: O(N2) to store the attention matrix

• Computation: O(N2dk) for matrix multiplication

For N = 10, 000 genes and dk = 64:

Memory = 10, 0002 × 4 bytes ≈ 400 MB

Operations = 10, 0002 × 64 ≈ 6.4× 109

This quadratic scaling makes standard attention impractical for large gene sequences.

3 Performer Attention

3.1 Motivation and Core Idea

The Performer attention mechanism addresses the quadratic complexity problem by:

1. Reformulating attention as a kernel method

2. Using random feature maps for kernel approximation

3. Reordering computations to avoid explicit N ×N matrices

6

3.2 Mathematical Foundation

3.2.1 Kernel Reformulation

Recall that softmax attention can be written as:

Attention(Q,K, V) = D−1 exp

(
QKT

√
dk

)
V (7)

where D = diag
(
exp

(
QKT
√
dk

)
1N

)
.

The key insight is to treat exp(qTi kj/
√
dk) as a kernel function:

Ksoftmax(x, y) = exp(xTy) (8)

Understanding Softmax as a Kernel in Attention

Why Softmax Acts as a Kernel in Attention Mechanisms
To understand why we treat softmax as a kernel, we need to examine the Attention
mechanism at the element-wise level. A kernel can be viewed as a function K(x,y)
that takes two vectors and returns a scalar representing their similarity.

1. The Entry-Wise View

In standard attention, we compute the matrix A = exp
(

QKT
√
dk

)
. Focusing on a single

entry at position (i, j):

Aij = exp

(
qT
i kj√
dk

)
This value Aij represents the raw affinity between the i-th query (e.g., Gene A) and
the j-th key (e.g., Gene B). In kernel theory, any function computing such similarity
can be interpreted as a Kernel Function K(x,y).

2. The Normalization Role of D
Softmax isn’t merely an exponential—it includes normalization so each row sums to
1. In standard notation:

Softmax(z)i =
exp(zi)∑N
j=1 exp(zj)

In matrix formulation, this is captured through the diagonal matrix D. Each diagonal
entry Dii contains the sum of affinities for row i:

Dii =
N∑
j=1

exp

(
qT
i kj√
dk

)
The final attention weights are obtained by:

Attention(Q,K,V) = D−1 exp

(
QKT

√
dk

)
V

7

Multiplication by D−1 divides each element in row i by Dii, exactly implementing
the softmax operation. Thus, the softmax attention mechanism can be interpreted
as applying a kernel (the exponential of scaled dot-products) followed by row-wise
normalization.

3.2.2 Random Feature Maps

The kernel trick approximates the kernel function using random features:

K(x, y) = E[ϕ(x)Tϕ(y)] ≈ ϕ(x)Tϕ(y) (9)

For the softmax kernel, we can use trigonometric random features or positive random
features.

3.2.3 Positive Random Features (PRF)

The Performer uses:

ϕ(x) =
1√
m

exp

(
Wx− ∥x∥

2

2

)
(10)

where W ∈ Rm×d is a random matrix with orthogonal rows.

Why Random Feature Maps and Positive Random Features (PRF)

Motivation: The Computational Bottleneck of Exact Kernel Methods
The standard attention mechanism with softmax has a quadratic computational com-
plexity O(N2) in sequence length, as it requires computing all pairwise interactions
between queries and keys. This becomes prohibitive for long sequences. Random
feature maps provide a solution by approximating the kernel function with linear com-
plexity.

3.2.4 Random Feature Maps: The Approximation Principle

The core idea comes from the kernel trick, which states that many kernel functions
can be approximated by explicit feature maps:

K(x,y) = Eω∼p(ω)[ϕω(x)
Tϕω(y)] ≈ ϕ(x)Tϕ(y) (11)

where ϕ(x) is a random feature map that projects the input into a higher-
dimensional space (dimension m), and the expectation is over some distribution p(ω)
of random parameters.
Why this works: Many kernels (including the softmax/Gaussian kernel) can be
expressed as an inner product in some implicit feature space. Random feature maps
make this explicit, allowing us to:

• Transform queries and keys separately: ϕ(qi) and ϕ(kj)

8

• Compute attention as: Attention ≈ ϕ(Q)ϕ(K)TV
normalizer

• Achieve O(Nmd) complexity instead of O(N2d)

3.2.5 Positive Random Features (PRF) for the Softmax Kernel

For the softmax kernelK(x,y) = exp(xTy), we need a specific type of random features.
The Performer model (Choromanski et al., 2020) uses:

ϕ(x) =
1√
m

exp

(
Wx− ∥x∥

2

2

)
(12)

where W ∈ Rm×d is a random matrix with rows wi ∼ N (0, Id), often made orthogo-
nal for better approximation.
Why this particular form? This stems from the Gaussian integral identity:

exp(xTy) = Ew∼N (0,I)

[
exp

(
wTx− ∥x∥

2

2

)
exp

(
wTy − ∥y∥

2

2

)]
(13)

Key properties of PRF:
• Positivity: All features are positive (exp(·) > 0), which is crucial for stable
attention computation

• Unbiased estimator: E[ϕ(x)Tϕ(y)] = exp(xTy)

• Variance reduction: Orthogonal rows in W reduce the variance of the esti-
mator

• Linearization: Allows rewriting attention as:

Attention(Q,K,V) ≈ D−1(ϕ(Q)(ϕ(K)TV))

where D is computed from ϕ(Q)ϕ(K)T1

Mathematical Derivation: Given ϕ(x) = 1√
m
exp(Wx− ∥x∥2/2), we have:

ϕ(x)Tϕ(y) =
1

m

m∑
i=1

exp

(
wT

i (x+ y)− ∥x∥
2 + ∥y∥2

2

)
By the law of large numbers, as m→∞, this converges to exp(xTy).

Practical Impact: The PRF approach enables linear attention mechanisms that:

• Scale to very long sequences (thousands to millions of tokens)

• Maintain theoretical guarantees of approximation quality

• Can be trained end-to-end like standard transformers

• Have been successfully applied in models like Performer, Linear Transformer,
and others

9

3.3 Step-by-Step Algorithm

Algorithm 1 Performer Attention Algorithm

Require: Input X ∈ RN×d, random feature dimension m
Ensure: Output Z ∈ RN×d

1: // Step 1: Linear projections (same as self-attention)
2: Q,K, V ← LinearProjections(X)
3: // Step 2: Compute random features
4: Generate random orthogonal matrix W ∈ Rm×d

5: Q′ ← ϕ(Q) = 1√
m
exp(WQ− ∥Q∥2

2
)

6: K ′ ← ϕ(K) = 1√
m
exp(WK − ∥K∥2

2
)

7: // Step 3: Reorder computations
8: // Instead of: Z = softmax(QKT)V
9: // We compute: Z = (Q′(K ′TV))⊘ (Q′(K ′T1N))
10: numerator← Q′ × (K ′T × V)
11: denominator← Q′ × (K ′T × 1N)
12: Z ← numerator⊘ denominator
13: return Z

Why Random Feature Maps and Positive Random Features (PRF)

3.4 Detailed Example with 5 Genes

Let’s use the same 5 genes from Table 1, with:

• d = 4 (original features)

• m = 8 (random features, much smaller than N2 = 25)

• dk = dv = 4

3.4.1 Step 1: Compute Random Matrix W

Generate random orthogonal matrix W ∈ R8×4:

W =



0.3 −0.2 0.8 0.5
−0.4 0.7 0.1 −0.6
0.6 0.3 −0.4 0.6
0.1 −0.5 0.7 0.5
−0.7 0.1 0.5 −0.5
0.5 0.6 0.2 0.6
−0.2 0.8 −0.3 0.5
0.4 0.2 0.6 −0.7


3.4.2 Step 2: Compute Random Features for Gene 1

After linear projection, suppose q1 = [0.8,−0.3, 1.2, 0.5].

10

Compute Wq1:

Wq1 =


0.3× 0.8 + (−0.2)× (−0.3) + 0.8× 1.2 + 0.5× 0.5
−0.4× 0.8 + 0.7× (−0.3) + 0.1× 1.2 + (−0.6)× 0.5

...
0.4× 0.8 + 0.2× (−0.3) + 0.6× 1.2 + (−0.7)× 0.5


= [1.05,−0.62, 0.78, 0.45,−1.12, 1.21,−0.35, 0.92]

Compute ∥q1∥2/2 = (0.82 + (−0.3)2 + 1.22 + 0.52)/2 = 0.955
Apply transformation:

ϕ(q1) =
1√
8
exp ([1.05,−0.62, 0.78, 0.45,−1.12, 1.21,−0.35, 0.92]− 0.955)

=
1

2.828
× [exp(0.095), exp(−1.575), . . . , exp(−0.035)]

= [0.18, 0.05, 0.12, 0.09, 0.03, 0.21, 0.07, 0.14]

3.5 Complexity Analysis

Operation Self-Attention Performer Savings

Memory O(N2) O(Nm) O(N/m)
Computation O(N2dk) O(Nmdk) O(N/m)
Matrix Size N ×N N ×m -

Table 2: Complexity comparison (m≪ N)

For N = 10, 000, dk = 64, m = 256:

Memory savings =
N

m
=

10, 000

256
≈ 39×

Computation savings =
N2dk
Nmdk

=
N

m
≈ 39×

4 Comparative Analysis

4.1 Theoretical Differences

4.2 Practical Considerations for Gene Analysis

4.2.1 When to Use Self-Attention:

• Small gene sets (N < 1, 000)

• When exact attention patterns are crucial

11

Aspect Self-Attention Performer

Exactness Exact computation Approximate via random
features

Memory Quadratic in sequence
length

Linear in sequence length

Compute Time Quadratic in sequence
length

Linear in sequence length

Parallelization Limited by N2 matrix Highly parallelizable
Theoretical Guarantees Exact result Probabilistic bounds
Biological Interpreta-
tion

Exact gene-gene interac-
tions

Approximate interactions

Table 3: Theoretical comparison

• For interpretability studies requiring exact weights

• When computational resources are abundant

4.2.2 When to Use Performer:

• Genome-scale analysis (N > 10, 000)

• Single-cell RNA-seq with many cells

• Protein sequence analysis

• Real-time biological applications

5 PyTorch Implementation

5.1 Complete Performer Attention Module

1 import torch

2 import torch.nn as nn

3 import torch.nn.functional as F

4 import math

5

6

7 class PerformerAttention(nn.Module):

8 """

9 Performer Attention Module

10

11 Args:

12 dim (int): Input dimension

13 heads (int): Number of attention heads

14 dim_head (int): Dimension per head

15 causal (bool): Whether to use causal masking

12

16 kernel_type (str): ’relu’ or ’softmax ’ kernel

17 random_features (int): Number of random features (m)

18 """

19

20 def __init__(self , dim , heads=8, dim_head =64, causal=False ,

21 kernel_type=’relu’, random_features =256):

22 super().__init__ ()

23 self.dim = dim

24 self.heads = heads

25 self.dim_head = dim_head

26 self.causal = causal

27 self.kernel_type = kernel_type

28 self.random_features = random_features

29

30 # Inner dimension for multi -head attention

31 inner_dim = dim_head * heads

32

33 # Linear projections for Q, K, V

34 self.to_qkv = nn.Linear(dim , inner_dim * 3, bias=False)

35

36 # Output projection

37 self.to_out = nn.Linear(inner_dim , dim)

38

39 # Random projection matrix (not learned , fixed during training)

40 self.register_buffer(’projection_matrix ’,

41 self.create_projection_matrix(dim_head ,

random_features))

42

43 # Layer normalization for stability

44 self.norm = nn.LayerNorm(dim_head)

45

46 def create_projection_matrix(self , dim , random_features):

47 """

48 Create random orthogonal matrix for kernel approximation

49

50 Args:

51 dim: Input dimension

52 random_features: Number of random features (m)

53

54 Returns:

55 Random orthogonal matrix of shape [dim , random_features]

56 """

57 # Generate random matrix

58 rand_mat = torch.randn(random_features , dim)

59

60 # Orthogonalize using QR decomposition

61 q, _ = torch.linalg.qr(rand_mat , mode=’reduced ’)

62

63 # Transpose to get [dim , random_features]

64 return q.t()

65

66 def relu_kernel(self , x, is_query=False):

67 """

68 ReLU kernel approximation

13

69 ϕ(x) = max(0, x) for both queries and keys

70 """

71 return F.relu(x)

72

73 def softmax_kernel(self , x, is_query , projection_matrix):

74 """

75 Softmax kernel approximation using random features

76

77 For queries: ϕ(q) = 1√
m
∗ exp(Wq − ||q||2)

78 For keys: ϕ(k) = 1√
m
∗ exp(Wk − ||k||2)

79 """

80 # Normalize inputs for numerical stability

81 x = F.normalize(x, dim=-1, p=2)

82

83 # Project using random matrix

84 projected = torch.matmul(x, projection_matrix)

85

86 # Compute squared norm

87 x_norm_squared = (x ** 2).sum(dim=-1, keepdim=True)

88

89 projected = projected - x_norm_squared / 2

90 return torch.exp(projected) / math.sqrt(self.random_features)

91

92

93

94 def forward(self , x, mask=None):

95 """

96 Forward pass

97

98 Args:

99 x: Input tensor of shape [batch_size , seq_len , dim]

100 mask: Optional attention mask

101

102 Returns:

103 Output tensor of shape [batch_size , seq_len , dim]

104 """

105 batch_size , seq_len , _ = x.shape

106

107 # Step 1: Linear projections to get Q, K, V

108 qkv = self.to_qkv(x).chunk(3, dim=-1)

109 q, k, v = map(

110 lambda t: t.reshape(batch_size , seq_len , self.heads , self.

dim_head).transpose (1, 2),

111 qkv

112)

113

114 # Normalize for stability

115 q = self.norm(q)

116 k = self.norm(k)

117

118 # Step 2: Apply kernel approximation

119 if self.kernel_type == ’relu’:

120 q_prime = self.relu_kernel(q, is_query=True)

14

121 k_prime = self.relu_kernel(k, is_query=False)

122 else: # softmax kernel

123 q_prime = self.softmax_kernel(q, is_query=True ,

124 projection_matrix=self.

projection_matrix)

125 k_prime = self.softmax_kernel(k, is_query=False ,

126 projection_matrix=self.

projection_matrix)

127

128 # Step 3: Compute attention using kernel trick

129

130 # Transpose K’ for efficient multiplication

131 k_prime_t = k_prime.transpose(-2, -1) # [batch , heads , dim_head ,

seq_len]

132

133 # Compute K’^T V

134 ktv = torch.matmul(k_prime_t , v) # [batch , heads , dim_head ,

dim_head]

135

136 # Compute Q’(K’^T V)

137 numerator = torch.matmul(q_prime , ktv) # [batch , heads , seq_len ,

dim_head]

138

139 # Normalization: compute denominator

140 # Create ones tensor for denominator calculation

141 ones = torch.ones(batch_size , seq_len , 1, 1, device=x.device)

142

143 # Compute K’^T * 1

144 kt_ones = torch.matmul(k_prime_t , ones) # [batch , heads , dim_head

, 1]

145

146 # Compute Q’(K’^T 1)

147 denominator = torch.matmul(q_prime , kt_ones) # [batch , heads ,

seq_len , 1]

148

149 # Avoid division by zero

150 denominator = denominator + 1e-8

151

152 # Normalize to get attention output

153 out = numerator / denominator

154

155 # Reshape back to original dimensions

156 out = out.transpose(1, 2).reshape(batch_size , seq_len , -1)

157

158 # Final linear projection

159 return self.to_out(out)

160

161

162 class GenePerformer(nn.Module):

163 """

164 Complete gene sequence model using Performer attention

165

166 Args:

167 num_genes: Number of unique genes in vocabulary

15

168 dim: Embedding dimension

169 depth: Number of Performer layers

170 heads: Number of attention heads

171 dim_head: Dimension per head

172 random_features: Number of random features for approximation

173 """

174

175 def __init__(self , num_genes , dim=128, depth=6, heads=8,

176 dim_head =64, random_features =256):

177 super().__init__ ()

178

179 # Gene embeddings (learnable representations)

180 self.gene_embeddings = nn.Embedding(num_genes , dim)

181

182 # Positional encodings (for sequence order)

183 self.position_embeddings = nn.Parameter(torch.randn(1, 1000, dim))

184

185 # Multiple Performer layers

186 self.layers = nn.ModuleList ([

187 PerformerAttention(

188 dim=dim ,

189 heads=heads ,

190 dim_head=dim_head ,

191 kernel_type=’softmax ’,

192 random_features=random_features

193)

194 for _ in range(depth)

195])

196

197 # Layer normalization

198 self.norm = nn.LayerNorm(dim)

199

200 # Output layer for gene prediction tasks

201 self.output_layer = nn.Linear(dim , num_genes)

202

203 def forward(self , gene_indices , mask=None):

204 """

205 Forward pass for gene sequence analysis

206

207 Args:

208 gene_indices: Tensor of shape [batch_size , seq_len]

209 containing gene indices

210 mask: Optional attention mask

211

212 Returns:

213 Logits for gene predictions

214 """

215 batch_size , seq_len = gene_indices.shape

216

217 # Get gene embeddings

218 x = self.gene_embeddings(gene_indices) # [batch , seq_len , dim]

219

220 # Add positional embeddings

221 pos_emb = self.position_embeddings [:, :seq_len , :]

16

222 x = x + pos_emb

223

224 # Apply Performer layers with residual connections

225 for layer in self.layers:

226 # Residual connection

227 x = layer(x, mask=mask) + x

228

229 # Final normalization

230 x = self.norm(x)

231

232 # Output predictions

233 return self.output_layer(x)

234

235

236 def create_gene_attention_model(config):

237 """

238 Factory function to create gene attention model

239

240 Args:

241 config: Dictionary containing model configuration

242

243 Returns:

244 Initialized GenePerformer model

245 """

246 model = GenePerformer(

247 num_genes=config[’num_genes ’],

248 dim=config.get(’dim’, 128),

249 depth=config.get(’depth’, 6),

250 heads=config.get(’heads’, 8),

251 dim_head=config.get(’dim_head ’, 64),

252 random_features=config.get(’random_features ’, 256)

253)

254

255 # Initialize weights

256 for p in model.parameters ():

257 if p.dim() > 1:

258 nn.init.xavier_uniform_(p)

259

260 return model

261

262

263 # Example usage

264 if __name__ == "__main__":

265 # Configuration

266 config = {

267 ’num_genes ’: 1000, # Vocabulary size

268 ’dim’: 128,

269 ’depth’: 6,

270 ’heads’: 8,

271 ’dim_head ’: 64,

272 ’random_features ’: 256

273 }

274

275 # Create model

17

276 model = create_gene_attention_model(config)

277

278 # Create sample batch of gene sequences

279 batch_size = 32

280 seq_len = 50 # 50 genes per sequence

281 gene_sequences = torch.randint(0, config[’num_genes ’], (batch_size ,

seq_len))

282

283 # Forward pass

284 print(f"Input shape: {gene_sequences.shape}")

285 output = model(gene_sequences)

286 print(f"Output shape: {output.shape}")

287

288 # Memory usage comparison

289 total_params = sum(p.numel() for p in model.parameters ())

290 print(f"Total parameters: {total_params :,}")

291

292 # Example of memory savings

293 N = seq_len

294 m = config[’random_features ’]

295 d = config[’dim_head ’]

296

297 normal_memory = N * N * 4 # bytes for float32

298 performer_memory = N * m * d * 4

299

300 print(f"\nMemory comparison for seq_len ={N}:")

301 print(f"Normal attention: {normal_memory :,} bytes")

302 print(f"Performer attention: {performer_memory :,} bytes")

303 print(f"Savings: {normal_memory/performer_memory :.1f}x")

Listing 1: Complete Performer Attention Implementation

5.2 Training Example for Gene Function Prediction

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 from torch.utils.data import Dataset , DataLoader

5 import numpy as np

6

7

8 class GeneDataset(Dataset):

9 """Dataset for gene sequence analysis"""

10

11 def __init__(self , sequences , labels , max_len =100):

12 self.sequences = sequences # List of gene index sequences

13 self.labels = labels # Corresponding function labels

14 self.max_len = max_len

15

16 def __len__(self):

17 return len(self.sequences)

18

19 def __getitem__(self , idx):

18

20 seq = self.sequences[idx][: self.max_len]

21 label = self.labels[idx]

22

23 # Pad sequence if necessary

24 if len(seq) < self.max_len:

25 seq = seq + [0] * (self.max_len - len(seq))

26

27 return torch.tensor(seq), torch.tensor(label)

28

29

30 def train_gene_model(model , train_loader , val_loader , config):

31 """

32 Training function for gene attention model

33

34 Args:

35 model: GenePerformer model

36 train_loader: DataLoader for training data

37 val_loader: DataLoader for validation data

38 config: Training configuration

39 """

40

41 # Loss function and optimizer

42 criterion = nn.CrossEntropyLoss ()

43 optimizer = optim.AdamW(

44 model.parameters (),

45 lr=config.get(’lr’, 1e-4),

46 weight_decay=config.get(’weight_decay ’, 0.01)

47)

48

49 # Learning rate scheduler

50 scheduler = optim.lr_scheduler.CosineAnnealingLR(

51 optimizer ,

52 T_max=config.get(’epochs ’, 50)

53)

54

55 # Training loop

56 for epoch in range(config[’epochs ’]):

57 model.train()

58 total_loss = 0

59

60 for batch_idx , (sequences , labels) in enumerate(train_loader):

61 optimizer.zero_grad ()

62

63 # Forward pass

64 outputs = model(sequences)

65 loss = criterion(outputs.view(-1, outputs.size(-1)),

66 labels.view(-1))

67

68 # Backward pass

69 loss.backward ()

70

71 # Gradient clipping

72 torch.nn.utils.clip_grad_norm_(model.parameters (), 1.0)

73

19

74 optimizer.step()

75

76 total_loss += loss.item()

77

78 if batch_idx % 100 == 0:

79 print(f"Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item

():.4f}")

80

81 # Validation

82 model.eval()

83 val_loss = 0

84 correct = 0

85 total = 0

86

87 with torch.no_grad ():

88 for sequences , labels in val_loader:

89 outputs = model(sequences)

90 loss = criterion(outputs.view(-1, outputs.size(-1)),

91 labels.view(-1))

92 val_loss += loss.item()

93

94 # Calculate accuracy

95 _, predicted = outputs.max(-1)

96 total += labels.numel()

97 correct += predicted.eq(labels).sum().item()

98

99 avg_train_loss = total_loss / len(train_loader)

100 avg_val_loss = val_loss / len(val_loader)

101 accuracy = 100. * correct / total

102

103 print(f"\nEpoch {epoch} Summary:")

104 print(f"Train Loss: {avg_train_loss :.4f}")

105 print(f"Val Loss: {avg_val_loss :.4f}")

106 print(f"Val Accuracy: {accuracy :.2f}%")

107

108 # Update learning rate

109 scheduler.step()

110

111 print("Training complete!")

112

113

114 # Example of creating and training the model

115 def main():

116 # Configuration

117 config = {

118 ’num_genes ’: 20000, # Human genome has ~20 ,000 protein -coding

genes

119 ’dim’: 256,

120 ’depth’: 8,

121 ’heads’: 8,

122 ’dim_head ’: 64,

123 ’random_features ’: 512,

124 ’lr’: 1e-4,

125 ’epochs ’: 50,

20

126 ’batch_size ’: 32

127 }

128

129 # Create model

130 model = create_gene_attention_model(config)

131

132 # Create synthetic dataset (in practice , use real gene data)

133 num_samples = 10000

134 max_seq_len = 100

135

136 # Generate random gene sequences

137 sequences = [

138 np.random.randint(0, config[’num_genes ’],

139 np.random.randint (50, max_seq_len)).tolist ()

140 for _ in range(num_samples)

141]

142

143 # Generate random labels (e.g., pathway membership)

144 labels = np.random.randint(0, 10, num_samples) # 10 different

pathways

145

146 # Split into train/val

147 split_idx = int (0.8 * num_samples)

148 train_dataset = GeneDataset(sequences [: split_idx], labels [: split_idx])

149 val_dataset = GeneDataset(sequences[split_idx:], labels[split_idx :])

150

151 train_loader = DataLoader(train_dataset , batch_size=config[’batch_size

’],

152 shuffle=True)

153 val_loader = DataLoader(val_dataset , batch_size=config[’batch_size ’])

154

155 # Train the model

156 train_gene_model(model , train_loader , val_loader , config)

157

158 # Save the model

159 torch.save(model.state_dict (), ’gene_performer_model.pth’)

160 print("Model saved!")

161

162

163 if __name__ == "__main__":

164 main()

Listing 2: Training Loop for Gene Function Prediction

6 Biological Applications

6.1 Gene-Gene Interaction Networks

Performer attention enables the analysis of large gene interaction networks by:

1. Scalability: Handling thousands of genes simultaneously

21

2. Attention Weights as Interactions: The attention matrix approximates gene-gene
interaction strengths

3. Pathway Analysis: Identifying genes that co-attend to each other in biological path-
ways

6.2 Single-Cell RNA-Seq Analysis

For single-cell RNA-seq data with N cells and G genes:

• Normal attention: O(N2G) - impractical for N > 10, 000 cells

• Performer attention: O(NmG) where m ≈ 256− 512

• Enables analysis of large-scale single-cell datasets

6.3 Protein Sequence Analysis

Protein sequences can be very long (up to 35,000 amino acids for Titin):

• Normal attention fails due to quadratic complexity

• Performer attention scales linearly with sequence length

• Enables whole-protein sequence analysis

7 Advanced Topics

7.1 Different Kernel Functions

Kernel Random Features Properties

Softmax ϕ(x) = exp(Wx− ∥x∥2/2) Matches standard attention
ReLU ϕ(x) = max(0,Wx) Simpler, faster
Trigonometric ϕ(x) = [sin(Wx), cos(Wx)] Theoretical guarantees

Table 4: Kernel functions for Performer attention

7.2 Hyperparameter Selection

• Random features (m): Typically 256-1024, trade-off between accuracy and efficiency

• Number of heads: 4-16, depends on task complexity

• Dimension per head: Usually 32-128

• Kernel type: ’softmax’ for exact approximation, ’relu’ for speed

22

8 Conclusion

The Performer attention mechanism represents a significant advance in scalable attention
architectures. By reformulating attention as a kernel method and using random feature ap-
proximations, it achieves linear time and memory complexity while maintaining competitive
performance with standard attention.

For biological applications, particularly in genomics, this enables:

• Analysis of genome-scale datasets

• Large-scale single-cell RNA-seq analysis

The provided PyTorch implementation offers a practical starting point for researchers
and practitioners working with large biological sequences. The modular design allows easy
integration into existing pipelines and adaptation to specific biological tasks.

8.1 Future Directions

1. Adaptive random features: Learning the projection matrix instead of random ini-
tialization

2. Sparse attention patterns: Combining Performer with sparse attention for even
greater efficiency

3. Biological priors: Incorporating domain knowledge into attention mechanisms

4. Multimodal integration: Combining gene expression with other omics data

Acknowledgments

The Performer attention architecture, proposed by Choromanski et al. in Rethinking Atten-
tion with Performers (ICLR 2021), introduces a linear-complexity alternative to standard
self-attention. This document is designed for educational and tutorial purposes , pro-
viding a deep dive into its mathematical foundations via practical small example.” This
document provides a pedagogical breakdown of those concepts and and its application to
long-range sequence modeling.

References

1. Vaswani, A., et al. (2017). Attention is all you need. NeurIPS.

2. Choromanski, K., et al. (2021). Rethinking attention with performers. ICLR.

23

A Appendix: Mathematical Derivations

A.1 Softmax Kernel Derivation

The softmax kernel is defined as:

Ksoftmax(x, y) = exp(xTy) (14)

We can rewrite this using the identity:

exp(xTy) = exp

(
∥x∥2 + ∥y∥2 − ∥x− y∥2

2

)
(15)

= exp

(
∥x∥2

2

)
exp

(
∥y∥2

2

)
exp

(
−∥x− y∥2

2

)
(16)

The Gaussian kernel exp(−∥x− y∥2/2) can be approximated using random Fourier fea-
tures.

A.2 Random Feature Maps for Gaussian Kernel

For the Gaussian kernel K(x, y) = exp(−∥x− y∥2/(2σ2)), we have:

K(x, y) = Ew∼N (0,I)[cos(w
T (x− y))] (17)

This leads to the random feature map:

ϕ(x) =
1√
m
[cos(wT

1 x), sin(w
T
1 x), . . . , cos(w

T
mx), sin(w

T
mx)] (18)

24

	Introduction
	Normal Self-Attention
	Intuition and Biological Motivation
	Mathematical Formulation
	Step 1: Linear Projections
	Step 2: Attention Scores
	Step 3: Softmax Normalization
	Step 4: Weighted Combination

	Example: 5 Genes
	Computational Complexity

	Performer Attention
	Motivation and Core Idea
	Mathematical Foundation
	Kernel Reformulation
	Random Feature Maps
	Positive Random Features (PRF)
	Random Feature Maps: The Approximation Principle
	Positive Random Features (PRF) for the Softmax Kernel

	Step-by-Step Algorithm
	Detailed Example with 5 Genes
	Step 1: Compute Random Matrix W
	Step 2: Compute Random Features for Gene 1

	Complexity Analysis

	Comparative Analysis
	Theoretical Differences
	Practical Considerations for Gene Analysis
	When to Use Self-Attention:
	When to Use Performer:

	PyTorch Implementation
	Complete Performer Attention Module
	Training Example for Gene Function Prediction

	Biological Applications
	Gene-Gene Interaction Networks
	Single-Cell RNA-Seq Analysis
	Protein Sequence Analysis

	Advanced Topics
	Different Kernel Functions
	Hyperparameter Selection

	Conclusion
	Future Directions

	Appendix: Mathematical Derivations
	Softmax Kernel Derivation
	Random Feature Maps for Gaussian Kernel

