

StutterNet: Stuttering Detection Using Time Delay Neural Network

Shakeel A. Sheikh¹, Md Sahidullah¹, Fabrice Hirsch², Slim Ouni¹

Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France¹ Université Paul-Valéry Montpellier, CNRS, Praxiling, Montpellier, France²

23-27 August, 2021

1/14

Shakeel et al. (UL, CNRS, Inria)

StutterNet

Fâilte Ireland

Stuttering problem

Definition

- A speech disorder, also known as stammering.
- Characterized by repetition of sounds, prolongation of sounds; and interruptions in speech known as blocks.

1. Barry Guitar. Stuttering: An integrated approach to its nature and treatment. Lippincott Williams & Wilkins, 2013.

Stuttering detection system

- T. Kourkounakis et al, "Detecting multiple speech disfluencies using a deep residual network with bidirectional long short-term memory". In: ICASSP 2020, pp. 6089–6093.
- C. Lea, et al, "SEP-28k: A dataset for stuttering event detection from podcasts with people who stutter," ICASSP 2021, pp. 6798-6802.

Shakeel et al. (UL, CNRS, Inria)

Time delay neural network (TDNN)

- TDNN is a neural network architecture used for modeling temporal data with contextual information.
- Applications:
 - speech recognition,
 - emotion detection,
 - speaker recognition, etc.

 Alex Waibel et al. "Phoneme recognition using time-delay neural networks". In: IEEE Transactions on Acoustics, Speech, and Signal Processing 37.3 (1989), pp. 328–339.

StutterNet architecture

StutterNet with input: D-dim (MFCC) X T (Chunk size)

Layer	Input X Output	Context
TDNN1	D X 512	[t-2, t+2]
TDNN2	1536 X 512	{t-2, t, t+2}
TDNN3	1536 X 512	{t-3, t, t+3}
TDNN4	512 X 512	{t}
TDNN5	512 X 1500	{t}
Statistical Pooling	1500 <i>T</i> X 3000	[0, <i>T</i>)
FC1	3000 X 512	-
FC2	512 X 512	-
FC3	512 X N	-

- FC: Fully connected layer.
- TDNN and FC are followed by a ReLU activation function and batch normalization.
- N is number of classes.

Features

- Audio clip 4 sec.
- 20-dim MFCC input features, with Hamming window of 20 ms and hop-length of 10 ms.

StutterNet parameters

- Learning rate = 10^{-4} .
- Optimizer = Amsgrad.
- Batch size = 64.
- Cross entropy loss function.
- Early stopping criteria with patience seven on validation loss.

- UCLASS, 128 speakers, 110 Males, 18 Females, 4674 samples.
- #classes = four (blocks, prolongations, repetitions and fluents).
- Train Speakers: 80%, Val Speakers: 10%, Test Speakers: 10%.
- K-fold cross validation with K=10.
- Evaluation metrics: Accuracy (Acc), Mathews correlation coefficient (MCC), precision, recall, F1-score.

	Precision					
Method	Repetition Prolong		Block	Fluent		
ResNet+BiLSTM ⁵	0.33	0.42	0.43	0.63		
StutterNet (Baseline)	0.36	0.43	0.42	0.59		
	Recall					
Method	Repetition	Prolongation	Block	Fluent		
ResNet+BiLSTM ⁵	0.20 0.23		0.53	0.55		
StutterNet (Baseline)	0.28	0.17	0.42	0.67		
	F1-Score					
Method	Repetition	Prolongation	Block	Fluent		
ResNet+BiLSTM ⁵	0.22	0.28	0.44	0.52		
StutterNet (Baseline)	0.30	0.23	0.42	0.62		

5 T. Kourkounakis et al, "Detecting multiple speech disfluencies using a deep residual network with bidirectional long short-term memory". In: ICASSP 2020. 2020, pp. 6089–6093¹.

Shakeel et al. (UL, CNRS, Inria)

Impact of context, layer size and MFCC size

Optimal configuration: layer size = 64, context = 5, MFCC = 20

StutterNet (optimized)

	Precision				
Method	Repetition	Prolongation	Block	Fluent	
ResNet+BiLSTM ⁵	0.33	0.42	0.43	0.63	
StutterNet (Optimized)	0.35	0.31	0.47	0.59	

	Recall				
Method	Repetition	Prolongation	Block	Fluent	
ResNet+BiLSTM ⁵	0.20	0.23	0.53	0.55	
StutterNet (Optimized)	0.24	0.13	0.47	0.70	

	F1-Score				
Method	Repetition	Prolongation	Block	Fluent	
ResNet+BiLSTM ⁵	0.22	0.28	0.44	0.52	
StutterNet (optimized)	0.27	0.16	0.46	0.63	

Method	Accuracy			Tot. Acc.	MCC.	
	Rept	Pr	В	F		
$Resnet+BiLSTM^5$	20.39	23.17	53.33	55.00	46.10	0.20
StutterNet (Optimized)	23.98	12.96	47.14	69.69	50.79	0.23

t-SNE plot

- Single unified and ASR free system to detect all stuttering types and fluent segments.
- \bullet Relative improvement in Acc = 10.17% and MCC = 15%
- Significantly lesser #parameters to train, 71K(*StutterNet*) in comparison to 24M (ResNet+BiLSTM).
- Generalization of *StutterNet* for cross corpora scenario with variable accents.
- Precise identification of stuttering event can't be predicted.
- Loss of information like pitch, phase, in extracting MFCC features.
- End-to-end systems for stuttering detection, where network may learn stuttering related features from raw signal.

Appendix: Evaluation metrics

MCC

$$MCC = \frac{cs - \mathbf{t}.\mathbf{p}}{\sqrt{s^2 - \mathbf{p}.\mathbf{p}}\sqrt{s^2 - \mathbf{t}.\mathbf{t}}}$$

where,

- $s = \sum_{i} \sum_{j} C_{ij}$, is the total number of samples,
- $c = \sum_{k} C_{kk}$, is the total number of samples correctly predicted,
- $p_k = \sum_i C_{ki}$, is the number of times class k was predicted,
- $t_k = \sum_i C_{ik}$, is the number of times class k truly occurred.

 Gorodkin, J. (2004). Comparing two K-category assignments by a K-category correlation coefficient. Computational Biology and Chemistry, 28(5-6), 367-374.

(1)